get rid of local ocr, using gpt-4o instead

This commit is contained in:
robinrolle
2025-04-13 16:15:02 +02:00
parent 1ef525c4b3
commit 2decad1ae1
2 changed files with 67 additions and 48 deletions

View File

@ -1,13 +1,15 @@
import base64
import binascii
import io
from PIL import Image
from langchain_core.messages import HumanMessage, SystemMessage
from typing import Callable, Type, Any, TypeVar
from langchain_core.runnables import Runnable
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import PydanticOutputParser
from langchain_openai.chat_models import ChatOpenAI
from pydantic import BaseModel
from utils.parsers import process_profile, process_passport, process_account, process_description
from utils.parsers import process_profile, process_account, process_description ,process_passport
from validation.from_account import FromAccount
from validation.from_passport import FromPassport
from validation.from_profile import FromProfile
@ -54,23 +56,43 @@ def extract_account(client_data: dict[str, Any])-> FromAccount:
def extract_passport(client_data: dict[str, Any]) -> FromPassport:
passport_data = client_data.get("passport")
raw_file_data = client_data.get("passport")
prompt_template = (
"Extract the following information from the provided passport text.\n"
"Return only JSON matching this format:\n{format_instructions}\n\n"
"Pay special attention to the passport number\n"
"Passport text:\n{processed_text}"
)
if not raw_file_data:
raise ValueError("Missing passport base64 data")
result = __run_extraction_chain(
raw_file_data=passport_data,
file_processor=process_passport,
pydantic_model=FromPassport,
prompt_template=prompt_template,
)
try:
base64.b64decode(raw_file_data, validate=True)
except binascii.Error as e:
raise ValueError(f"Invalid base64 data: {e}")
return result
# Décodage image
image_bytes = base64.b64decode(raw_file_data)
image = Image.open(io.BytesIO(image_bytes))
# Parser Pydantic
parser = PydanticOutputParser(pydantic_object=FromPassport)
format_instructions = parser.get_format_instructions()
# LLM gpt-4o
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# Messages multimodaux
messages = [
SystemMessage(content="Tu es un assistant qui lit les passeports."),
HumanMessage(
content=[
{"type": "text", "text": f"Lis ce passeport et retourne les infos suivantes au format JSON :\n{format_instructions}"},
{"type": "image_url", "image_url": {"url": "data:image/jpeg;base64," + raw_file_data}},
]
)
]
# Appel direct du LLM (hors prompt chain)
result = llm.invoke(messages)
# Parsing structuré
return parser.parse(result.content)
def extract_profile(client_data: dict[str, Any]) -> FromProfile: