Rename to __run_extraction_chain and create extract_profile
This commit is contained in:
38
app.py
38
app.py
@ -1,12 +1,10 @@
|
||||
from dto.requests import GameStartRequestDTO
|
||||
from services.extractor import run_extraction_chain
|
||||
from services.julius_baer_api_client import JuliusBaerApiClient
|
||||
from validation.from_passport import FromPassport
|
||||
|
||||
from services.player import Player
|
||||
from utils.parsers import process_passport
|
||||
from flask import Flask
|
||||
|
||||
import config
|
||||
from dto.requests import GameStartRequestDTO
|
||||
from services.extractor import extract_profile
|
||||
from services.julius_baer_api_client import JuliusBaerApiClient
|
||||
from services.player import Player
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -15,37 +13,15 @@ app = Flask(__name__)
|
||||
def hello_world():
|
||||
return 'Hello World!'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
jb_client = JuliusBaerApiClient()
|
||||
game_start_request = GameStartRequestDTO(player_name=config.API_TEAM)
|
||||
res = jb_client.start_game(game_start_request)
|
||||
|
||||
|
||||
passport_data = res.client_data.get("passport")
|
||||
|
||||
prompt_template = (
|
||||
"Extract the following information from the provided passport text.\n"
|
||||
"Return only JSON matching this format:\n{format_instructions}\n\n"
|
||||
"Pay special attention to the passport number and signature.\n"
|
||||
"Passport text:\n{processed_text}"
|
||||
)
|
||||
|
||||
result = run_extraction_chain(
|
||||
raw_file_data=passport_data,
|
||||
file_processor=process_passport,
|
||||
pydantic_model=FromPassport,
|
||||
prompt_template=prompt_template,
|
||||
)
|
||||
|
||||
print(result)
|
||||
result = extract_profile(res.client_data)
|
||||
|
||||
player = Player()
|
||||
player.play_on_separate_thread()
|
||||
|
||||
app.run()
|
||||
|
||||
# res.session_id
|
||||
# UUID('fde19363-a3d5-432e-8b87-54a6dd54f0dd')
|
||||
# second test UUID('e3d58302-400a-4bc6-9772-ae50de43c9f4')
|
||||
# UUID('f8b2a0a6-d4e0-45e6-900f-8ecb3c28f993')
|
||||
# UUID('f8b2a0a6-d4e0-45e6-900f-8ecb3c28f993')
|
@ -1,20 +1,44 @@
|
||||
import base64
|
||||
import binascii
|
||||
from typing import Callable, Type
|
||||
from typing import Callable, Type, Any, TypeVar
|
||||
from langchain_core.runnables import Runnable
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.output_parsers import PydanticOutputParser
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
from pydantic import BaseModel
|
||||
|
||||
from utils.parsers import process_profile
|
||||
from validation.from_profile import FromProfile
|
||||
|
||||
|
||||
def run_extraction_chain(
|
||||
def extract_profile(client_data: dict[str, Any]):
|
||||
passport_data = client_data.get("profile")
|
||||
|
||||
prompt_template = (
|
||||
"Extract the following information from the provided text.\n"
|
||||
"Return only JSON matching this format:\n{format_instructions}\n\n"
|
||||
"Pay special attention to the passport number and signature.\n"
|
||||
"Passport text:\n{processed_text}"
|
||||
)
|
||||
|
||||
result = __run_extraction_chain(
|
||||
raw_file_data=passport_data,
|
||||
file_processor=process_profile,
|
||||
pydantic_model=FromProfile,
|
||||
prompt_template=prompt_template,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
ModelType = TypeVar("ModelType", bound=BaseModel)
|
||||
def __run_extraction_chain(
|
||||
*,
|
||||
raw_file_data: str,
|
||||
file_processor: Callable[[str], str],
|
||||
pydantic_model: Type,
|
||||
pydantic_model: type[ModelType],
|
||||
prompt_template: str,
|
||||
model_name: str = "gemini-2.0-flash"
|
||||
):
|
||||
) -> ModelType:
|
||||
"""
|
||||
Traite un fichier encodé en base64, applique un parser OCR, génère un prompt, envoie à un modèle LLM, et retourne le résultat parsé.
|
||||
|
||||
|
Reference in New Issue
Block a user